Step of Proof: nth_tl_is_fseg
11,40
postcript
pdf
Inference at
*
2
I
of proof for Lemma
nth
tl
is
fseg
:
1.
T
: Type
2.
L1
:
T
List
3.
L2
:
T
List
4.
n
: {0..(||
L2
||+1)
}
5.
L1
= nth_tl(
n
;
L2
)
L
:
T
List. (
L2
= (
L
@
L1
))
latex
by ((InstConcl [firstn(
n
;
L2
)])
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
L2
= (firstn(
n
;
L2
) @
L1
)
C
.
Definitions
firstn(
n
;
as
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
,
nth_tl(
n
;
as
)
,
Type
,
as
@
bs
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
t
T
,
s
=
t
,
type
List
,
{
i
..
j
}
Lemmas
firstn
wf
,
append
wf
origin